


+44 (0) 23 8066 %666 www.johnsonvalves.com

JOHI

PR6/PR7 Elster Honeywell Inductive Pulse Communication Modules To Suit Elster (Honeywell) Water Meters

Honeywell

elster

Designed with advanced bi-directional inductive technology helping to enhance the efficiency of network system management, leakage control and reading of water meters remotely.

The inductive pulse modules have two outputs, offering both high and low speed bi-directional pulse capabilities as standard. They are compatible with most Building Management Systems (BMS), Data Loggers, Remote Readers and AMR systems.

Operating Principles

Outputs are all "open drain". This means a electronic switch transistor is used, it opens and closes just like a reed switch does.

Pulse Communication Module Standard Outputs										
Part No.	Compatible Meters	Output (DN15-DN100)		Output (DN150-DN300)		Cable				
		Primary	Secondary	Primary	Secondary	Length				
PR6-1:1	V200 V210 C4000*	1 pulse/1 litre (к1)	1 pulse/1 litre (κ1)	-	-	2 M				
PR6-1:10		1 pulse/1 litre (к1)	1 pulse/10 litres (K10)	-	-	2 M				
PR6-1:100		1 pulse/1 litre (K1)	1 pulse/100 litres (K100)	-	-	2 M				
PR7-1:10	H4000, S2000 C4000** C4200**	1 pulse/1 litre (K1)	1 pulse/10 litre (K10)	1 pulse/10 litres (K1)	1 pulse/100 litres (K10)	5 M				
PR7-10:10		1 pulse/10 litres (K10)	1 pulse/10 litres (K10)	1 pulse/100 litres (K10)	1 pulse/100 litres (K10)	5 M				
PR7-10:100		1 pulse/10 litres (K10)	1 pulse/100 litres (K100)	1 pulse/100 litres (K10)	1 pulse/1000 litres (K100)	5 M				

* Low flow by-pass meter ** High flow main meter K = K-factor

Additional Data

, a antional Bata			
Power Source	3.6V Lithium Battery (7-14 years life)	Output Voltage	30V max
Environment	Indoor or outdoor use	Sink Current	30mA max
IP Class	IP68	Pulse Rate	75Hz max (meter dependent)
Operational Temp	-15°C to 65°C	K1 Pulse Width (PR6)	80ms
Humidity Range	Up to 100% RH	K1 Pulse Width (PR7)	10ms
Pollution Degree	III	K10 & K100 Pulse Width (All)	100ms

Wiring Data

•Use the Secondary (**Red**) CH2P compensated output for general data logging, remote displays, or AMR equipment.

•Use the Primary (Yellow) CH1P output where reverse flow monitoring is required. Most data loggers support bidirectional monitoring.

For applications such as SCADA, BMS, PLC, the outputs may be connected via pull-up resistor up to 30V.

Yellow (CH1P)	White (CH1D)	Red (CH2P)	Green (CH2C)	Brown (TAMP)	Black (GND)
Primary Pulse Channel 1 Output	Directional Flag	Secondary Pulses Channel 2 Output	Compensation Flag	Tamper	Common
Outputs all pulses regardless of direction	Gives the direction of the pulses on CH1P The signal is High for Forward Flow and Low for Reverse Flow	Outputs pulses that are compensated for backwards flow. The module counts the backwards flow and stops outputting until the same forward flow has occurred	Indicates when compensation is occurring by going to Low state during backflow compensation	Activates to High state when the PR6/7 is removed from the meter or low battery	Ground 0V

Please Note : Always check compatibility with your equipment supplier