

The JV240023 is a general purpose metal axial expansion joint helps to alleviate stress in systems by absorbing longitudinal expansion and compression in pipework.

Approvals, Features \& Benefits

- Suitable for a wide range of applications
- Horizontal or vertical position
- External protection
- Internal liner

Pressure \& Temperature
Pressure range:-
16 bar
(see graph below)
Temperature range:-
$-20^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$

DN	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 5}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$
\mathbf{L}	105	105	120	150	140	155	220	190	270	275	285
Ødo	48.2	55.6	61	77	96	112	141	165	201	252	325.8
Ød1	32	36	41.4	53.5	70	78	103.5	127.3	156	207	256
\mathbf{t}	0.3	0.3	0.3	0.4	0.4	0.5	0.6	0.6	0.6	0.8	1
Waves	17	17	17	20	16	15	20	16	20	16	14
Axial	± 11	± 10	± 13	± 20	± 20	± 25	± 32	± 33	± 40	± 33	± 40
Weight Kg	2.05	3.09	3.38	4.62	5.65	7.02	8.77	11.24	15.11	21.07	31

MATERIALS	
Flanges	Steel (37.2)
Bellows	Stainless Steel (AISI 321)
Liner	Stainless Steel (AISI 321)

Pressure / Temperature Graph

Example Layout

The following considerations should be noted during installation :

- The route of the pipeline is straight.
- The fixes points are dimensioned so that they can absorb the reaction forces and stiffness rate that arise during use.
- The pipeline is limited by fixed points.
- Check that the expansion joint is not subjected to the weight of the pipeline.
- Sagging is prevented by using fixed or loose bearings.
- The distance between expansion joint and the $1^{\text {st }}$ bearing may be a maximum of 4 times the pipe diameter. The distance between the $1^{\text {st }}$ and the $2^{\text {nd }}$ bearing may be a maximum of 14 times the pipe diameter. The distance between the remaining bearings may be a maximum of 21 times the pipe diameter. The distance may be reduced where this is required for the inherent stability of the pipe.

